Research to Improve NOAA's Hurricane Forecast Guidance

Hurricane Matthew

> Hurricane Nicole

#NOAAHurricaneAware

Frank Marks
AOML/Hurricane Research Division
4 May 2017

Hurricane Matthew: Impacts

#NOAAHurricaneAware

North Carolina: 26 deaths

Florida: 12 deaths

South Carolina: 4 deaths

Haiti: 598 – 1,384+ deaths

Tropical Cyclone Intensity

#NOAAHurricaneAware

- HWRF skill has improved over the past few seasons, but rapid change cases are still a problem
 - Statistical models have difficulty forecasting rapid change
 - Dynamical models can forecast rapid change, but not reliably (e.g., Matthew, Joaquin, Patricia)
- Consensus approach still shows best hope for modest improvements in forecast accuracy, but dramatic improvements still likely years away
- Large improvements requires increases in inner-core observations, higher resolution computer models, and better ways to get the new observations into the new models

So how do we get there?

Keys to Success

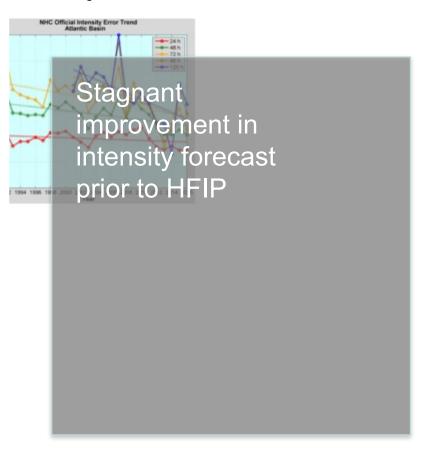
#NOAAHurricaneAware

Science

- Improve operational high-resolution coupled models (HWRF) – particularly intensity changes
- Improve understanding from combination of observations & high-resolution models

Information Technology

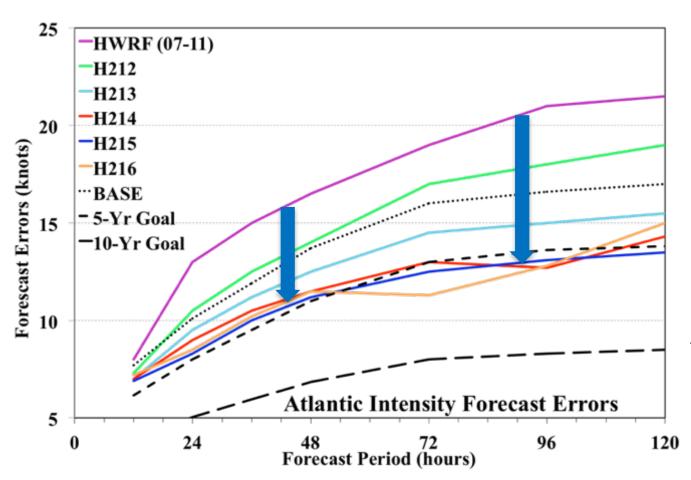
- Develop research computing capacity to accelerate transition of research to operations
- Observing Strategy
- Improve use of existing and planned systems
- Improve Forecaster Products



Current State of the Art

#NOAAHurricaneAware

Operational Forecast Performance



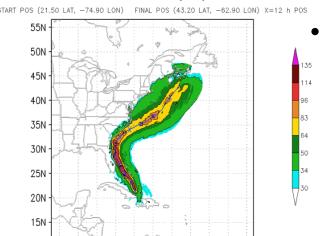
- Since HFIP began in 2009, forecast error has decreased by 20-25% for 1-5 day forecasts.
- NOAA upgraded HWRF model resolution; now 2 km
- Dramatic improvements in HWRF since HFIP*

HWRF Improvements

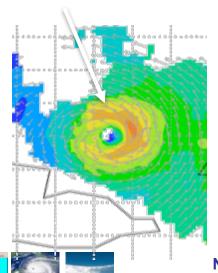
#NOAAHurricaneAware

Under HFIP, the HWRF model has demonstrated a remarkable 15-20% improvement in hurricane intensity forecast accuracy each year since 2011

HWRF Improvements: Assimilation of Aircraft Recon



#NOAAHurricaneAware

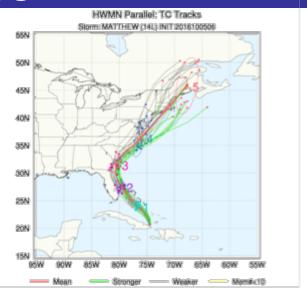

transmitted Tail
Doppler radar data
in real-time for
assimilation into
HWRF

NOAA P-3

HWRF 10M MAX WIND(KTS) MATTHEW14L

Resulting forecast allowed NHC to target warnings where needed, without overwarning broader East Coast.

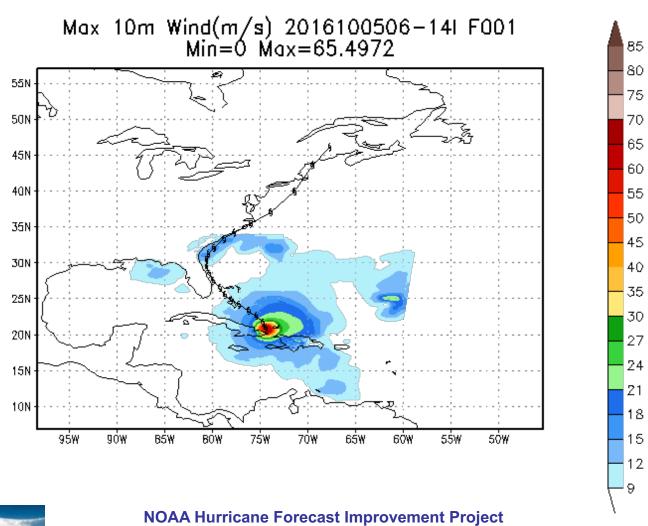
NOAA Hurricane Forecast Improvement Project


95W 90W 85W 80W 75W 70W 65W 60W 55W 50W 45W

10N

HWRF Improvements:

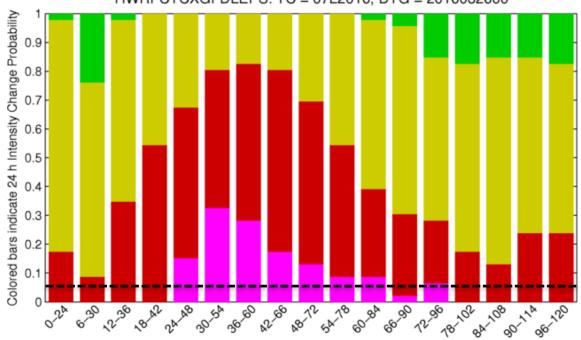
Ensembles


#NOAAHurricaneAware

HWRF Improvements:

Ensembles

#NOAAHurricaneAware


HWRF Improvements:

Ensembles

#NOAAHurricaneAware

COAMPS-TC / HWRF

HWRFCTCXGFDLEPS: TC = 07L2016, DTG = 2016082600

24 h lead time window

 $\Delta I >= 30 \text{ kt (Rapid Intensification)}$

10 kt \leq Δ I \leq 30 kt (Moderate Intensification)

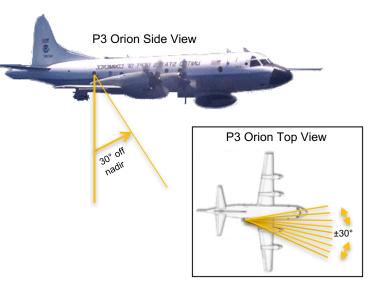
 $-10 \text{ kt} < \Delta \text{ I} < 10 \text{ kt}$ (Steady Intensity)

 $-30 \text{ kt} < \Delta \text{ I} <= -10 \text{ kt} (Moderate Weakening})$

 $\Delta I \le -30 \text{ kt (Rapid Weakening)}$

TC already dissipated or dissipates during window

NOAA Hurricane Forecast Improvement Project

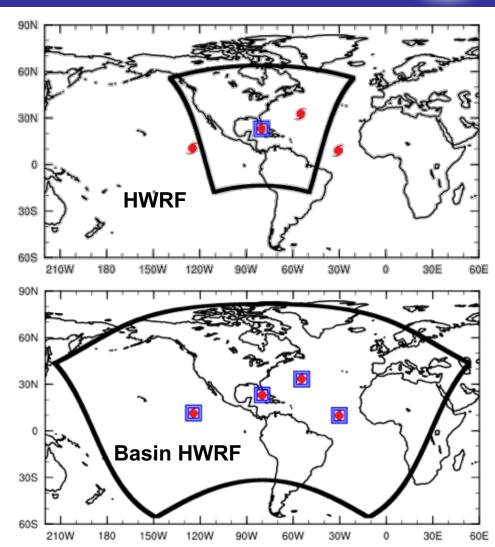

HWRF Improvements: New Observations - 2017

Doppler Wind Lidar

 Compliments P-3 & G-IV Tail Doppler radar

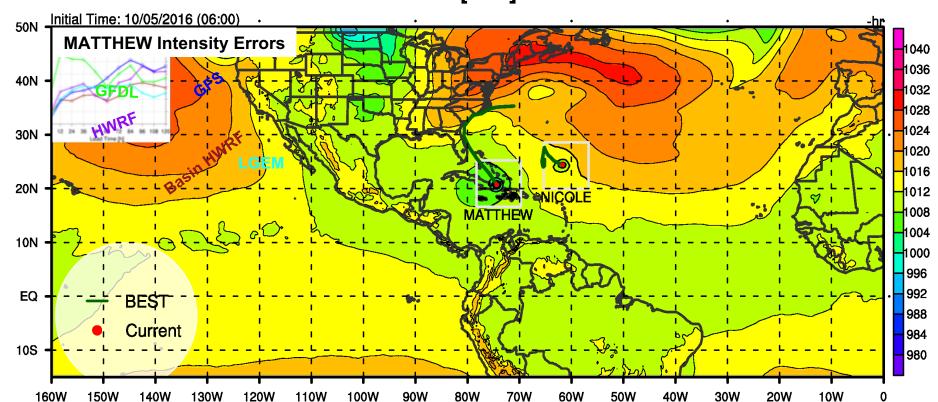
#NOAAHurricaneAware

Coyote


- Targets data gaps in hurricane boundary layer thermodynamics
- 5-6 Coyote in 2017
- Data sent to NHC

Next steps — Basin HWRF #NOAAHurricaneAware

- Keys to further improve hurricane predictions lie in modeling multi-scale interactions
- Requires Basin/Global domains with high resolution nests at 1-3 km horizontal resolution
- Research & development to advance next generation high resolution global model with nests



Next steps — Basin HWRF #NOAAHurricaneAware

Matthew (14L) & Nicole (15L)

Mean Sea Level Pressure [hPa] in Basin-Scale HWRF

Research Challenges -

#NOAAHurricaneAware

Priorities to be addressed by HFIP research & development community in FY17 are:

- Reduce largest track and intensity errors
 - Improve initialization & physics impacting rapid intensity change
 - Improve vortex/shear interactions
- Extend/improve 7-day forecast skill
- Improve ensemble prediction & products

Communicating in the field

#NOAAHurricaneAware

Our blog
 http://noaahrd.wordpress.com

- HRD Web page
 http://www.aoml.noaa.gov/hrd
- Facebook (5,844 followers)
 http://www.facebook.com/noaahrd
- Twitter (20,830 followers)
 http://twitter.com/#!/HRD AOML NOAA

