
The analysis of Hurricane Michael's intensity at landfall in Florida

Jack Beven National Hurricane Center April 23, 2019

Hurricane Michael Life History

- Formed from a broad low pressure area over the northwestern Caribbean Sea on 7 October.
- Passed near the western end of Cuba on 8 October as a Category 2 hurricane.
- Made landfall near Mexico Beach/Tyndall AFB as a category 5 hurricane on 10 October, causing devastating damage.
- Brought strong winds and heavy rains to other portions of the southeastern United States.

Track of Hurricane Michael

Michael Was Category 4 In Real Time

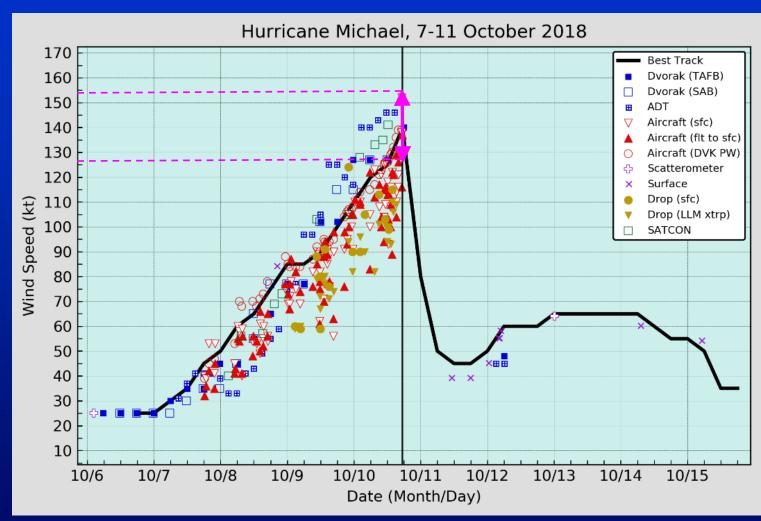
- Michael was operationally a strong category 4 hurricane with maximum sustained winds of 155 mph.
- NHC routinely conducts post-analysis of tropical cyclone tracks, intensities, and wind radii after the cyclone is over.
- The post-analysis indicates Michael was category 5 at landfall with maximum sustained winds near 160 mph. This small change is typical of post-analysis, but in this case it crossed a major hurricane classification threshold.

Hurricane Michael Intermediate Advisory Number 16A...CorrectedNWS National Hurricane Center Miami FLAL142018100 PM CDT Wed Oct 10 2018

Corrected pressure in inches in summary block and text

...MICHAEL INTENSIFIES AS IT MAKES LANDFALL NEAR MEXICO BEACH FLORIDA...

...LIFE-THREATENING STORM SURGE...HURRICANE FORCE WINDS...AND HEAVY RAINFALL OCCURING OVER THE FLORIDA PANHANDLE...


SUMMARY OF 100 PM CDT...1800 UTC...INFORMATION

LOCATION...30.0N 85.5W ABOUT 5 MI...10 KM NW OF MEXICO BEACH FLORIDA ABOUT 20 MI...30 KM SE OF PANAMA CITY FLORIDA MAXIMUM SUSTAINED WINDS...155 MPH...250 KM/H PRESENT MOVEMENT...NNE OR 20 DEGREES AT 14 MPH...22 KM/H MINIMUM CENTRAL PRESSURE...919 MB...27.14 INCHES

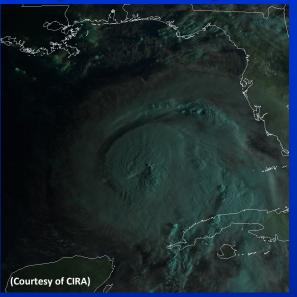
www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf

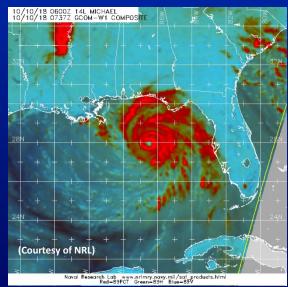
The Best Track Intensity Is More Complicated Than It Sounds

- In an intense hurricane, the maximum sustained winds occur in a very small area near the center at the radius of maximum wind (RMW).
- These winds are usually not directly observed. Thus, they are inferred from other data.
- Forecasters constantly weigh sampling and representativeness issues of many data types using their experience.
- Even when data is plentiful, the NHC best tracks have an uncertainty of ±10%.

Intensity fix data for Hurricane Michael

Data to Help Analyze Tropical Cyclones


Geostationary Satellites


- Help determine center location (with varying degrees of confidence)
- Apply Dvorak Technique (subjective and objective) to estimate a system's intensity
- Allows forecasters to see features that might influence the future track/intensity

• Low-Earth Orbiting Satellites

- Help determine storm location and structure
- Some instruments provide intensity estimates
- Reconnaissance Aircraft
 - Flight-level winds
 - Dropwindsonde Data
 - Stepped Frequency Microwave Radiometer (SFMR) surface winds

Data to Help Analyze Tropical Cyclones

• Surface observations

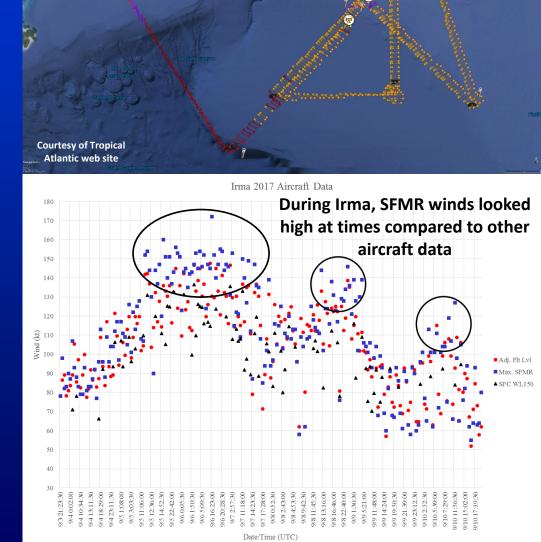
- Ship and buoy reports
- Fixed land-based observing sites
- Portable data platforms and storm chasers

• Radar

- Provides rain distribution and wind (Doppler) information
- Useful for "now-casting" during an event and a few hours prior, and for post-analysis

Sounds like a lot of data but...

Only a fraction of the storm circulation is sampled by most of these data types.


Issues on Evaluating TC Intensity: Aircraft Data

- Aircraft flight-level winds
 - Measured above the surface need adjustment to surface
 - Data only along flight path
 - Measured winds can be unrepresentative

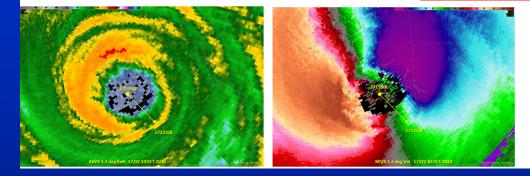
• SFMR winds

- Estimates the wind speed from the foam coverage on the ocean surface
- Data only below the aircraft
- Rain/wind separation
- Wave shoaling effects
- Possible instrument bias at high winds under study
- Dropsondes
 - Measure winds only where the sonde is falling
 - Like flight-level winds, data can be unrepresentative

Issues on Evaluating TC Intensity: Other Data

Surface observations

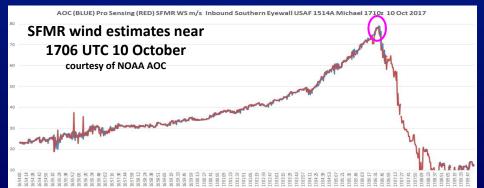
- Rarely in the right place to sample the maximum winds
- Instruments often don't survive the hurricane
- Instrument exposure is an issue
- Doppler radar winds
 - Radar only measures winds along the beam
 - High temporal sampling can cause unrepresentative results
 - Require vertical adjustment to the surface
- Satellite intensity estimates
 - Infers intensity from cloud patterns or other satellite measured quantities
 - Measurements not precisely correlated to intensity
- Wind-pressure relationships
 - Based on empirical statistics for previous cyclones
 - Inherent imprecision


Radar beam height = 8337 ft ASL Aircraft altitude/height = 8599 ft ASL

Recon actual wind direction = 225^o Radar radial = 149^o Radar viewing angle = 76^o Cosine 76^o = 0.2419

V_{actual} = V_{Doppler} /Cosine of angle

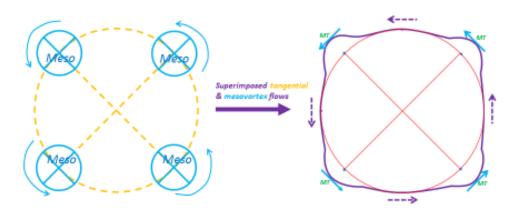
 $\begin{array}{l} V_{Doppler} \; 33.0 \; kt => V_{actual} = 136.0 \; kt \\ V_{Doppler} \; 35.0 \; kt => V_{actual} = 144.7 \; kt \\ V_{Doppler} \; 38.9 \; kt => V_{actual} = 160.8 \; kt \\ V_{Doppler} \; 42.8 \; kt => V_{actual} = 176.9 \; kt \end{array}$


4-bin V_{actual} average = 154.6 kt Recon V_{actual} = 152.0 kt

DEVELOPMENTAL PATTERN TYPES	PRE STORM	TROPICAI (Minimal)	STORM (Strong)	HURRICA (Minimal)	NE PATTE (Strong)	ERN TYPES (Super)
	T1.5 ±.5	T2.5	T3.5	T4.5	T5.5	T6.5 - T8
CURVED BAND PRIMARY PATTERN TYPE	D	D	D		CFN BFILS	
	1	La Arresta Composition de	·	e strand and	· · · · · · · · · · · · · · · · · · ·	1
CURVED BAND	E)	Ð	Ð	Ð	OFS OFFI	CTS IS
CDO PATTERN TYPE	2	Ö	Ð	(Fi Jirk)	(55) JE 1	GF 6 JF1
SHEAR PATTERN TYPE	1. Star	Ð	\mathcal{Q}		ak Tech ud Patt	-

Aircraft Winds At Landfall

- Maximum flight-level winds: 152 kt/175 mph at 700 mb (about 8,000 ft) in the southeastern eyewall. Using standard NHC reductions, the surface wind estimate is 137 kt/158 mph.
- Maximum SFMR surface wind estimate: 138 kt/ 159 mph. Note the near-by data dropout ('///').
- Reconstruction of the missing winds by the NOAA AOC indicates a maximum wind estimate of 152 kt during the dropout.
- This occurred where the water was 85-90 ft deep, so shoaling waves effects are possible.
- Dropsondes were not available.

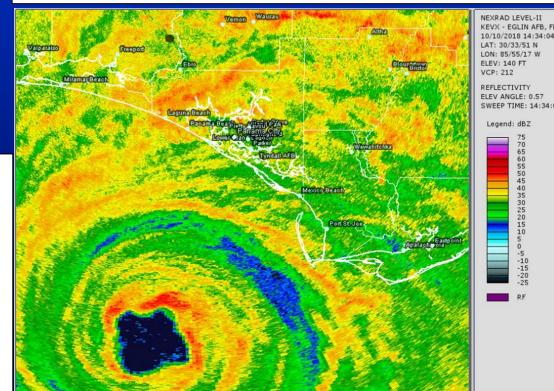


AF301 1514A MICHAEL		HDOB 26 2	0181010			
171430 3000N 08530W	6971 02430	9188 +179	+133 17206	3 066 /		03
171500 2959N 08529W	6971 02458	9209 +180	+133 18806	8 069 /		03
171530 2957N 08529W	6970 02467	9227 +168	+136 19906	9 071 (097 001	00
171600 2956N 08530W	6970 02471	9229 +173	+133 21306	5 067 (086 001	03
171630 2955N 08531W	6970 02466	9233 +164	+133 22105	8 064 (075 002	00
171700 2955N 08532W	6958 02471	9199 +195	+121 22806	0 064 (066 001	03
171730 2955N 08534W	6978 02430	9174 +200	+125 24104	0 054 (052 001	03
171800 2956N 08535W	6952 02459	9186 +187	+124 24802	9 034 (033 000	03
171830 2957N 08536W	6981 02416	9182 +192	+104 24201	8 025 0	022 000	03
171900 2959N 08535W	6964 02438	9186 +184	+104 21502	0 022 (016 001	03
171930 3000N 08534W	6970 02432	9177 +191	+097 19402	7 030 0	053 002	03
172000 2959N 08532W	6960 02446	9181 +191	+100 19303	0 031 /		03
172030 2958N 08532W	6968 02435	9173 +197	+105 20803	2 033 (049 002	00
172100 2956N 08531W	6963 02446	9171 +205	+121 22904	9 065 (083 001	03
172130 2955N 08530W	6981 02466	9242 +168	+135 23810	7 122 (099 001	00
172200 2954N 08528W	6967 02555	9327 +140	+139 23114	2 149 1	121 002	05
172230 2953N 08527W	6973 02621	9437 +137	+136 22515	0 <u>152</u> 1	123 005	03
172300 2952N 08525W	6977 02684	9527 +124	//// 21814	1 148 1	132 007	05
172330 2951N 08524W	6971 02747	//// +114	//// 21914	0 146 1	L33 006	05
172400 2951N 08522W	6976 02789	9613 +128	+118 21713	2 136 1	L01 002	03

AF301 1514A 1	MICHAEL			HDOB	25 20	01810	10				
170430 2943N								124	108	022	00
170500 2944N	08540W	6960	02736	9546	+130	+130	272124	129	115	028	03
170530 2945N	08540W	6954	02699	9517	+134	+134	277111	118	116	035	03
170600 2947N	08540W	7004	02583	9461	+141	+141	283117	123	138	041	03
170630 2948N	08540W	6991	02536	9392	+138	1111	280117	127	111	111	05
170700 2949N	08540W	7116	02351	9315	+161	1111	287110	129	119	021	09
170730 2951N	08539W	6958	02511	9259	+169	+150	289077	099	111	111	03
170800 2952N	08539W	6967	02480	9244	+157	+146	287052	065	111	111	03
170830 2954N	08538W	6970	02451	9212	+173	+119	280031	045	038	001	03
170900 2956N	08537 W	6979	02433	9196	+181	+108	258017	023	024	001	03
170930 2957N	08538W	6976	02430	9190	+184	+101	248005	014	023	000	00
171000 2959N	08539W	6971	02440	9202	+170	+123	079004	011	036	001	00
171030 3000N	08540W	6975	02450	9209	+179	+129	043029	039	052	004	03
171100 3002N	08540W	6950	02502	9225	+175	+133	058045	049	111	111	03
171130 3002N	08538W	6978	02455	9220	+175	+132	090041	043	109	000	03
171200 3003N	08537W	6965	02471	9218	+174	+136	110050	052	110	000	03
171230 3003N	08535W	6982	02439	9207	+176	+138	120049	051	104	001	03
171300 3002N	08534W	6967	02447	9193	+184	+133	129043	047	099	000	03
171330 3001N	08532W	6970	02432	9176	+193	+127	147043	045	111	111	03
171400 3000N	08531W	6967	02448	9179	+191	+128	164052	057	111	111	03

Radar Wind Data Analysis

- Analysis of Eglin AFB radar Doppler winds suggest that the maximum surface winds averaged near 160 – mph near landfall, and they may have been higher at landfall.
- Analyzed winds aloft agree well with the 175 mph aircraft wind.
- The analysis is supported by objective analysis of Eglin AFB data and partial analysis of Tallahassee radar data.
- Filtered out were periods ("M") where eyewall mesocyclones caused unrepresentative winds.



The tangential & mesovortex combined flows can only be accurately assessed at locations *MT* where both flows directions <u>exactly</u> coincide, thus allowing for symmetrical/circular flow to be assumed at those points.

This allows for an accurate assessment of the Cosine of the Radar Viewing Angle (RVA) and, therefore, V_{actual} to be calculated.

H. Michael -- KEVX 0.5 deg elev. pre-landfall Doppler radar analysis, 10 OCT 2018 – se quadrant

Surface Wind Data In The Core

Tyndall AFB ASOS – 86 mph 2-min winds and a gust to 139 mph

Crooked Island

Jersey I

The reported winds are well below both the operational and final best track intensities, which is typical during landfalling hurricanes. However, the sites were likely not optimally located to sample the maximum winds.

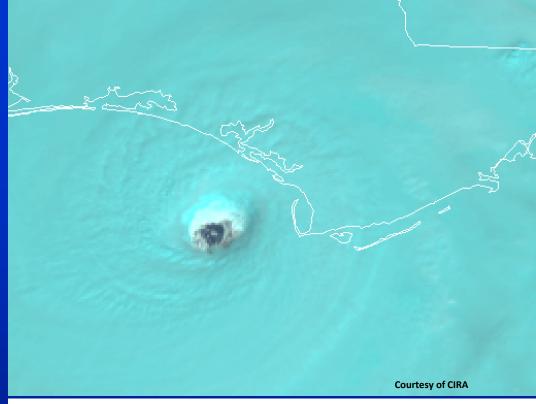
Courtesy Blake Medler USAF

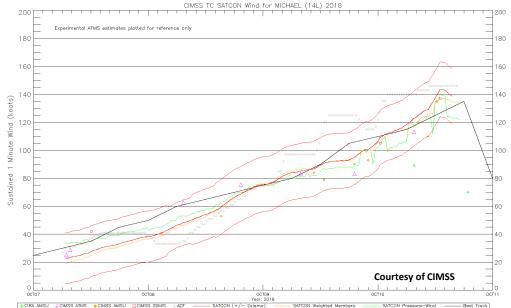
Wind Speed

Overstreet

Round Timbe

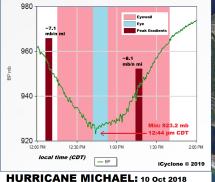
Mexico Beach


FCMP Tower T2 – 108 mph 5-min winds and a gust to 127 mph – likely outside the strongest winds


FCMP Tower T3 – 106 mph 1 min winds and a gust to 129 mph – blew over during the strongest winds

Springfield

Satellite Intensity Estimates


- Subjective Dvorak Technique estimates: 160 mph.
- Objective Advanced Dvorak Technique estimates: 160-165 mph.
- Satellite microwave data estimates: 125-155 mph.
- The Satellite Consensus technique from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) estimates: 160-165 mph.

Storm Chaser Josh Morgerman 923.2 mb in NW corner of eye

Callaway, Florida, USA LOCATION A 30.1540N 85.5896W - ref el 34 ft (CLOSE VIEW)

Surface Pressure Data In The Core

Tyndall AFB ASOS – 922.4 mb – hurricane-force winds at time of minimum pressure – incomplete record

Raffield Island

FCMP Tower T3 – 920.2 mb in eye

Sprinafield

Overstreet

Round Timbe

Surface and aircraft pressure data support a landfall central pressure of 919 mb. Using several wind-pressure relationships, this suggests a landfall intensity near 160 mph. In the Re-analysis Project, a storm with Michael's pressure and other parameters would be called category 5.

Crooked Island

USGS Portable – 929.7 mb near RMW

Putting It All Together

- While there remains uncertainty, the available data favors increasing the landfall intensity of Michael from 155 to 160 mph.
- This is a small change that is normal for postanalysis. However, it increases Michael's landfall intensity from category 4 to category 5 on the Saffir-Simpson Hurricane Wind Scale.
- Other known category 5 landfalls in the United States (including Puerto Rico):
 - San Felipe Hurricane, Puerto Rico (1928)
 - Labor Day Hurricane, Florida Keys (1935)
 - Camille, Mississippi and Louisiana coasts (1969)
 - Andrew, south Florida (1992).
- Additional re-assessment of the landfall intensity may occur when current research on the SFMR data is complete.

Saffir-Simpson Wind Scale Estimates Wind Damage

			MAJOR HURRICANES				
Tropical Stor	m Category 1	Category 2	Category 3	Category 4	Category 5		
39-73 mph (34-63 kt)	74-95mph (64-82 kt)	96-110 mph (83-95 kt)	111-129 mph (96-112 kt)	130-156 mph (113-136 kt)	> 156 mph (> 136 kt)		
Debby (2012)	Isaac (2012)	Ike (2008)	Katrina (LA - 2005)	Charley (2004)	Andrew (1992)		
Allison (2001)	Claudette (2003)	Isabel (2003)	Wilma (FL- 2005)	Hugo (1589)	Camille (1969)		
					2		
april 1							
and the second second	1. 4.1.4						
		4.81		Manunda.			

Mexico Beach -Courtesy of NOAA NGS and NWS Tallahassee