REQUEST FOR PROPOSAL

RE: THE SELECTION OF AN EVALUATION CONSULTANT TO SUPPORT THE NOAA-21ST CCLC WATERSHED STEM EDUCATION PARTNERSHIP GRANTS PILOT PROGRAM

OVERVIEW

The objective of this opportunity is to secure a contract for the creation and implementation of an evaluation study to assess the process, implementation and outcome of a new collaborative pilot program administered through a subcontract of a financial assistance award received from the NOAA Office of Education. The purpose of this Request for Proposal (RFP) is to define the requirements, solicit proposals, and to gain adequate information to assess such services.

ISSUING OFFICE
[TBD]

TIME FRAME
[TBD]

NOAA-21ST CCLC WATERSHED STEM EDUCATION PARTNERSHIP GRANTS PILOT PROGRAM BACKGROUND

The U.S. Department of Education’s (ED) funds 21st CCLC sites to provide academic enrichment opportunities during non-school hours for children, particularly students who attend high-poverty and low-performing schools. The program helps students meet state and local learning standards in core academic subjects, such as reading and STEM; offers students a broad array of enrichment activities that can complement their regular academic programs;
and offers literacy and other educational services to the families of participating children. Grants funded by [TBD] through the NOAA-21st CCLC Watershed STEM Education Program will provide access to dynamic academic enrichment experiences to program participants at a minimum of twenty-five 21st CCLC program sites in at least five of the seven geographic areas served by the NOAA Bay-Watershed Education and Training (B-WET) program. Grant activities will focus on delivering components of Meaningful Watershed Educational Experiences, or MWEEs, led by B-WET program staff and a network of high-capacity grantees and partners, to this high need audience. The MWEE is the core B-WET program experience and is based on research literature, evaluation results and lessons learned from over a decade of program implementation.

PREVIOUS EVALUATION

The NOAA B-WET program has been an agency leader in evaluation. It was identified by the National Research Council as “the most rigorous evaluation design employed among the NOAA evaluation programs.” This recognition was in reference to a Chesapeake B-WET program evaluation in 2007 that showed a link between students’ participation in B-WET-funded MWEEs and an increase in their environmental stewardship and literacy. The B-WET program has also developed resources to support grantee reporting and evaluation and is currently implementing a national evaluation system. This system will help the program monitor and adjust activities based on information about best practices, and support grantees in using those practices. More information about B-WET evaluation work is available here: http://www.noaa.gov/office-education/bwet/grantee-resources

The work funded under this request for proposals will be the first evaluation conducted on the pilot year of implementation of this new collaborative project between NOAA and ED. However, it is expected that this project will draw, to the extent practicable, on previous evaluation of the NOAA B-WET and ED 21st CCLC programs, as well as other similar federal agency STEM partnerships. The U.S. Department of Education is partnering with three federal agencies in addition to NOAA: the National Aeronautics and Space Administration (NASA), the National Park Service (NPS), and the Institute of Museum and Library Services (IMLS). These programs all employ a variety of mechanisms (direct, face to face engagement, both real time and archived web-based professional development and technical assistance) to make high quality
STEM programs available to student participants and to build capacity among participating 21st CCLC staff.

Each of these partners retains an independent evaluator to conduct implementation or evaluation studies in order to determine what aspects of these partnerships work well, what may be improved, and to assess impact on participants. For the efforts which are currently being piloted, such as the collaboration with NOAA, an implementation study is conducted; more mature efforts no longer in pilot phase include more comprehensive program evaluation. The implementation studies rely on a range of evaluation methods. However they all include use of the Dimensions of Success (DoS) observation tool that defines twelve indicators of STEM program quality in out-of-school time (e.g., after school, summer camps, etc.) For more information, visit: http://www.pearweb.org/tools/dos.html or http://www.pearweb.org/tools/flyers/DoSGuide_ForOrganizations_2014.pdf

In addition to the implementation studies, ED, in collaboration with Synergy Enterprises, Inc., has retained the Activation Laboratory at the University of California, Berkeley to conduct synthesis evaluation studies. The overarching constructs to be studied in the synthesis evaluation will include awareness, understanding, attitudes, preferences, or experiences of staff and student participants.

WORK STATEMENT

This request for proposals (RFP) is intended to identify an evaluator to assess the processes, implementation and outcome of this collaborative program pilot. Evaluation findings will be used by the U.S. Department of Education and the National Oceanic and Atmospheric Administration to help inform potential replication and expansion efforts and to produce lessons for the field around promising strategies for inspiring and engaging K-12 youth in watershed-related activities during out-of-school and expanded learning time using the natural environment as an outdoor classroom. The total amount of this RFP is [TBD – up to 10% of total budget allocated to the small scale grant program].

SCOPE OF SERVICES

Through this RFP, a consultant organization will be selected to work collaboratively project partners (the U.S. Department of Education and the
National Oceanic and Atmospheric Administration) to design, develop, and implement a descriptive evaluation plan for this pilot program. The evaluation plan will include an analysis and summary of the experiences of the 21st CCLC program staff and student participants and provide recommendations for future implementation of NOAA’s “Meaningful Watershed Educational Experiences” pursued as part of STEM programming initiatives under ED’s 21st CCLC program. This will include conducting observations using the Dimensions of Success (DoS) observation tool and illustrated below, and in Appendix 1. The consultant must provide for DoS observations meeting the following criteria:

- observe at a minimum of five participating 21st CCLC program sites across at least three B-WET regions
- complete at least 2 observations (3-5 recommended) per site at approximately similar intervals (early in collaboration, middle, late, etc.)
- observation process involves live observation of an activity, written data report, and some plan for sharing feedback with staff (this will depend on the local 21st CCLC site director’s existing feedback structure).

Data must be uploaded to an online database within 24 hours of live observation. DoS observations can only be completed by external evaluators or internal program staff who have completed DoS certification training. Having pairs of internal-external observers can facilitate translating the results into practice.
DoS measures twelve dimensions that fall in 4 broad domains: Features of the Learning Environment, Activity Engagement, STEM Knowledge and Practices, and Youth Development in STEM. (http://www.pearweb.org)

For specific information about the kinds of variables that should be tracked and assessed as part of the evaluation, please see “Appendix 1. Overview of the DoS Dimensions.” To learn more about how to get trained in DoS, please visit: http://www.pearweb.org/tools/dos.html#HowTo

Program activities will be implemented at 21st CCLC sites in two sessions: March-May 2017 and June-August 2017. The evaluator and/or their trained designees should aim to conduct observations at programs in each session, if possible. The evaluation plan should also include strategies for improving 21st CCLC program site capacity to carry out evaluation activities, such as supporting a cycle of quality improvement using the DoS planning and feedback/coaching tools.

NOAA is also interested in answering the following questions to the extent possible given the project timeline and budget. In addressing these questions the consultant should review existing instruments developed for the B-WET national evaluation system and attempt to align this evaluation work with that system, as appropriate. Background on the B-WET national evaluation may be found here: http://www.noaa.gov/office-education/bwet/grantee-resources/national-evaluation

- What models of implementation are being delivered by recipients, and how well do these models work for 21CCLC site staff?
- What specifically is working well, and what isn’t? We are particularly interested in program elements that serve multi-cultural audiences well (e.g. ELL - English language learners, ESL - English as a second language students.)
- How may program challenges be addressed through modifications to the request for proposals, resources and support provided by NOAA, or other aspects of program design?
- What evidence is there that project audiences will make decisions and engage in behaviors that protect and restore ocean, coastal and/or Great Lakes watersheds as a result of program participation?
- What recommendations can you provide for future program evaluation to address participant outcomes, and how may this work be aligned with existing B-WET evaluation efforts?
Lastly, in order to support the U.S. Department of Education’s evaluation of all of the agency STEM partnerships, the evaluator is encouraged to consider the specific constructs provided in Appendix 2 when developing the evaluation plan. Evidence addressing any of these constructs will be shared with ED’s synthesis evaluator. Note that these are for consideration only, and should not be prioritized above the DoS observations and other specific program questions described above. Guidance on common instruments and metrics to explore these constructs may be available.

Implementation of the evaluation plan will be in accordance with applicable Office of Management and Budget Paperwork Reduction Act (PRA) requirements. Since the timeline for this project does not allow for PRA clearance, evaluation activities conducted under this project must not trigger the PRA. The evaluator will also have to be aware of, and adhere to, any relevant policies pertaining to data collection from program audiences, as provided by grantees. The proposed evaluation plan will need to be reviewed and approved by the project partners.

Specific responsibilities of the evaluator (with input from staff) include:

- Participation in a kick-off meeting with key staff to review program goals and objectives, associated activities, evaluation criteria, questions and strategy, data collection (what, who, when, where, how), timeline, etc.
- Review of the program’s logic model.
- Development and implementation of a process evaluation strategy.
- Documentation and assessment of the effectiveness of program training and materials.
- Documentation of preliminary/pilot program outcomes.
- Design and/or identification of data collection instruments/process.
- Implementation of data collection procedures.
- Designation of staff to complete required training and related activities for purposes of administering and collecting data using the DOS observation tool.
- Provide for at least 2 DoS observations (3-5 recommended) of a minimum of five participating 21st CCLC program sites across at least three B-WET regions, as described under Scope of Services above.
- Advise the project partners on how to incorporate into the evaluation work scope any planning, coordination, follow-up activities, additional analyses, and identification of data and documentation relevant to the U.S. Department of Education synthesis evaluation, as applicable.
• Preparation and submission of a final report which includes any revisions/corrections to the program pilot’s logic model.
• Participation in program training meeting (i.e., share information about evaluation, data collection process, etc.).
• Participation in monthly coordination calls with collaborating partners.
• Presentation of findings to program team and lead partners (U.S. Department of Education and the National Oceanic and Atmospheric Administration).

Responsibilities of the project partners:
• Ensure compliance across the project.
• Coordinate between the evaluator and partner agencies (NOAA and Department of Education).
• Educate the evaluator about the program and desired outcomes.
• Provide feedback about proposed evaluation design and approach.
• Update evaluator on program changes.
• Provide guidance around reporting.
• Collaborate with evaluator in collecting data.
• Regularly monitor contract

DELIVERABLES

1. Descriptive evaluation plan, approved by partners (NOAA, ED)
2. At least 2 DoS observations (3-5 recommended) of a minimum of five participating 21st CCLC program sites across at least three B-WET regions.
3. Additional data collection to address program evaluation questions and support U.S. ED synthesis evaluation (as determined in collaboration with the project partners as part of the evaluation plan)
4. Final Report and Presentation - A summary report incorporating findings from the DOS observations and any additional data collection.

PERIOD OF PERFORMANCE

[TBD]

<table>
<thead>
<tr>
<th>Communication</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Touch base with Program Assistant and NOAA staff via email</td>
<td>Weekly</td>
</tr>
<tr>
<td>2 Communicate via phone with Program Assistant and NOAA staff</td>
<td>Monthly</td>
</tr>
</tbody>
</table>
INFORMATION REQUIRED FROM ALL PROPOSAL SUBMITTERS

Preferred Contractor Qualifications

The selected subcontractor is required to have the following qualifications:

● Minimum 5 years professional experience, specifically in evaluating education programs
● Familiar with the Dimensions of Success (DoS) tool and certified to conduct DoS observations, or ability to quickly become certified (trainings are offered monthly and there are calibration exercises required afterwards).
● Ability to multi-task and work under tight deadlines.
● Selected contractor shall have knowledge of the NOAA Office of Education and the NOAA B-WET program and the U.S. Department of Education and 21st CCLC program (mission, management, current priority issues and projects as well as rules and regulations).
● Contractor is available to travel on site or arrange for designees to conduct DoS observations and work with NOAA and ED staff.
● Selected contractor shall work well with a team, contributing to common goals; and shall take and give criticism constructively, assimilating suggestions and directions into positive results.
● Contractor shall be willing to make suggestions and offer solutions as appropriate and be able to maintain a high level of professionalism and integrity at all times.
● Contractor should demonstrate experience and success working with a diverse audience.

Proposal Content and Requirements

In order to be considered for selection and a possible agreement, your proposal must be complete and include the items listed below.

Evaluation Proposal must include the following
A cover page with the individual or firm’s name, date, mailing address, telephone number, fax number, email address, and web site.

A concise description of the contractor’s principal expertise including education, past experience, clients, knowledge strengths, and products and services offered (1 page limit). The partners are particularly interested in organizations that have a demonstrated history of evaluating out-of-school time STEM learning programs and using the Dimensions of Success (DoS) tool.

A proposal providing the scope of services noted above in this RFP, proof of history and capacity to provide deliverables similar in size, complexity, and nature to those described in this RFP (5 page limit with no less than 11pt font). Proposal should include the proposed evaluation approach, a potential timeline describing major steps in the evaluation process, and information about potential constraints and how they will be addressed.

Qualifications, related to the specialized qualifications noted above with titles, bios, and brief list of clients served in the capacity proposed. Include any accreditations, licenses, or special training related to the services requested. Attaching a resume or CV is acceptable. (1 page limit).

Links to, and, examples of other work similar to what is requested, produced for past clients. (1 page limit).

At least three references for similar clients or projects produced by you or your company. Please include the name of the organization, name of the contact person, address, telephone number, and email. Please include references who can speak not only toward end product satisfaction, but toward project management experience. (1 page limit).

Cost Proposal:

Your price quote, not to exceed [TBD] should cover the full scope of services and define estimated expenses for project management, design, and travel.

Significant travel may be required for this project. Applicants should include details of travel and related expenses in their cost proposal. Please review the GSA guidelines for a benchmark for reasonable travel costs:
https://www.gsa.gov/portal/category/26429. Since sites have not been selected at the time of this solicitation, it is understood that travel costs included in the proposal will be estimates.

Rates quoted must be guaranteed for one year.

Submission of Proposal

[TBD]

Selection Criteria

Proposals will be evaluated based on experience, proposal, and price quote. Each submission will be evaluated for how well the proposal meets project’s goals and the goals of the NOAA-21st CCLC Watershed STEM Education Partnership Grants Pilot Program, quality of the presentation, and the qualifications of the proposed contractor.

Key Definitions

21st CCLC – 21st Century Community Learning Centers provide academic enrichment opportunities during non-school hours for children, especially students who attend high-poverty and low-performing schools.

NOAA – The National Oceanic and Atmospheric Administration

B-WET – NOAA Bay-Watershed Education and Training Program. The NOAA B-WET program funds locally relevant, authentic experiential STEM learning in seven regions of the United States: California, Chesapeake Bay, Great Lakes, Gulf of Mexico, Hawai'i, New England, and the Pacific Northwest

MWEE – Meaningful Watershed Educational Experience. MWEEs are multi-stage activities that include learning both outdoors and in the classroom, and aim to increase the environmental literacy of all participants. The MWEE is the core B-WET program experience and is based on research literature, evaluation results and lessons learned.

STEM – Science, Technology, Engineering, Mathematics

Resources

The PEAR Institute: Partnerships in Education and Resilience.
http://www.pearweb.org/
Appendix 1: Overview of the DoS Dimensions

FEATURES OF THE LEARNING ENVIRONMENT

<table>
<thead>
<tr>
<th>Organization</th>
<th>Materials</th>
<th>Space Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the activities delivered in an organized manner?</td>
<td>Are the materials appropriate for the students, aligned with the STEM learning goals, and appealing to the students?</td>
<td>Is the space utilized in a way that is conducive to OST learning?</td>
</tr>
<tr>
<td>Are materials available and do transitions flow?</td>
<td></td>
<td>Are there any distractions that impact the learning experience?</td>
</tr>
</tbody>
</table>

ACTIVITY ENGAGEMENT

<table>
<thead>
<tr>
<th>Participation</th>
<th>Purposeful Activities</th>
<th>Engagement with STEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are student participating in all aspects of activities equally?</td>
<td>Are the activities related to the STEM learning goals?</td>
<td>Are students doing the cognitive work while engaging in hands-on activities that help them explore STEM content?</td>
</tr>
<tr>
<td>Are boys participating more than girls? Are some students dominating group work?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEM KNOWLEDGE AND PRACTICES

<table>
<thead>
<tr>
<th>STEM Content Learning</th>
<th>Inquiry</th>
<th>Reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is STEM content presented accurately during activities?</td>
<td>Are students participating in the practices of scientists, mathematicians, engineers, etc.?</td>
<td>Do students have opportunities to reflect and engage in meaning-making about the activities and related content?</td>
</tr>
<tr>
<td>Do the students’ comments, questions, and performance during activities reflect accurate uptake of STEM content</td>
<td>Are students observing, collecting data, building explanations, etc.?</td>
<td></td>
</tr>
</tbody>
</table>

YOUTH DEVELOPMENT IN STEM

<table>
<thead>
<tr>
<th>Relationships</th>
<th>Relevance</th>
<th>Youth Voice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there positive student-facilitator and student-student interactions?</td>
<td>Is there evidence that the facilitator and students are making connections between the STEM content and activities and students’ everyday lives and experiences.</td>
<td>Are students encouraged to voice their ideas/opinions?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do students make important and meaningful choices that shape their learning experience?</td>
</tr>
</tbody>
</table>

Appendix 2: U.S. Department of Education’s Synthesis Evaluation Constructs

Evaluation constructs for consideration:

● Confidence in thinking about/understanding/learning about/practicing this area (science/engineering)
● Awareness of relevance of these skills/this information/this discipline to the real world
● Connections between these activities and subjects studied/learning during the school day
● Interest in participating in more activities like this:
 ○ through a club, camp, internet-based exploration or other out-of-school activity
 ○ through taking additional classes in this area
● Enthusiasm for this area of endeavor (science/engineering)
● Opportunities to develop/apply/see real-world relevance of problem solving/collaborative problem solving
● Interest in doing more (real-world) problem solving/collaborative problem solving
● Opportunities to develop/apply/see relevance of critical thinking
● Opportunities to develop/apply/see relevance of persistence/resilience
● Opportunities to develop/apply/see relevance of systems thinking
● Awareness of careers in this area and relevant educational pathways